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Review

Introduction

Mainstays of cancer treatment include chemotherapy and 
radiotherapy that are used in various regimens as first-line 
treatments for most malignancies. A major mechanism of tumor 
inhibition by chemotherapy is undoubtedly through direct 
toxicity to tumor cells. A range of chemical agents are used 
with varied mechanisms of action including their alkylating 
properties and their nucleoside analog properties. The use of 
chemotherapeutics exploits the preferential toxicity against 
rapidly dividing cells, such as tumor cells. Similarly, radiation 
can induce DNA damage in tumor cells leading to the selective 
elimination of malignant cells.

However, in addition to these mechanisms, chemotherapy and 
radiation can have a wide range of effects on tumors including 
modifications to the tumor microenvironment. This can lead 
to the induction of inflammatory cytokines and upregulation 
of death receptors such as Fas, which can increase antigen 
availability and presentation, increase the expression of major 

histocompatibility molecules, normalize vessels, induce danger 
signals and increase T cell localization.1

The tumor microenvironment is composed of cancer cells 
in association with a variety of other cells that comprise the 
stroma. Stromal cells include fibroblasts and endothelial cells 
in addition to a variety of leukocytes, some of which can be 
immunosuppressive. Such immunosuppressive leukocytes 
include myeloid-derived suppressor cells (MDSC),2 type 2 
macrophages (M2)3 and T regulatory cells (Treg),4 which can 
inhibit immunity through cell contact or through the secretion 
of immunomodulating cytokines including transforming growth 
factor-β (TGF-β)

In this review, we focus on studies demonstrating the 
ability of chemotherapy and radiotherapy to modulate the 
tumor microenvironment, resulting in the enhancement of 
co-administered immunotherapy.

Chemotherapy to Change  
the Microenvironment  

and Enhance Immunotherapy

Although chemotherapeutic agents are generally referred to 
as cytotoxic, some chemotherapeutics can conserve aspects of 
immunity, providing opportunities to combine chemotherapy 
with immunotherapy. Gemcitabine is a nucleoside analog 
that inhibits DNA replication. One of its main side effects is 
neutropenia, but this can be used to advantage in the reduction 
of MDSC. When used in combination with cytokines or 
vaccine, synergistic antitumor activity can occur associated 
with reduction in MDSC numbers.5 An increased ratio of M1 
to M2 macrophages in tumor has also been observed together 
with increases in the antitumor activity of CD8+ T  cells and 
NK cells.6,7 Immunotherapeutics aimed at stimulating antigen 
presenting cells (APC) can also benefit from co-administration 
of gemcitabine, as observed in studies when combined with 
an anti-CD40 agonist antibody.8 Gemcitabine alone was able 
to increase the frequency of CD8+ T  cells within tumors, 
which were necessary for eradication of solid tumors. Other 
chemotherapeutic agents including anthracyclines can also 
mediate recruitment and differentiation of APC to enable tumor 
immunity.9
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The tumor microenvironment is a complex assortment of 
cells that includes a variety of leukocytes. The overall effect of 
the microenvironment is to support the growth of tumors and 
suppress immune responses. Immunotherapy is a highly prom-
ising form of cancer treatment, but its efficacy can be severely 
compromised by an immunosuppressive tumor microenviron-
ment. Chemotherapy and radiation treatment can mediate 
tumor reduction through cytotoxic effects, but it is becoming 
increasingly clear that these forms of treatment can be used 
to modify the tumor microenvironment to liberate tumor anti-
gens and decrease immunosuppression. Chemotherapy and 
radiotherapy can be used to modulate the tumor microenvi-
ronment to enhance immunotherapy.
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Oxaliplatin, a platinum-based drug, has recently been 
demonstrated to induce immunogenic cell death10,11 to provide 
increased levels of tumor antigen presentable by APC12 and 
disrupt STAT6-mediated suppression of immune responses.13 
Its use in combination with an inducible adenoviral IL-12 
(Ad-IL-12) system was associated with a less immunosuppressive 
microenvironment characterized by a reduction in intratumoral 
MDSC and an increased ratio of CD8+ /Treg cells.14 Interestingly, 
in contrast to studies listed above, this effect was not seen when 
Ad-IL-12 was combined with gemcitabine, suggesting model-
specific considerations in the action of chemotherapeutics. 
Indeed, despite demonstrations of the ability of chemotherapy 
to enhance immunity, this is not always the case. Indeed, even 
agents widely thought of as preserving immunity can, at least in 
some circumstances, potentiate the immunoregulatory capacity 
of MDSC leading to reduced tumor immunity.15

The importance of the ability of chemotherapeutics to 
increase antigen availability is apparent in a study using 5-aza-
2’-deoxycytidine, a demethylating agent, which induced de novo 
expression of a cancer testis antigen, leading to enhancement of 
adoptive immunotherapy of mouse breast cancer tumors.16

In addition to changing the cellular composition of the tumor 
microenvironment, chemotherapeutics can change the cytokine 
profile and block regulatory cell function. Paclitaxel, a mitotic 
inhibitor, can reduce MDSC infiltration,17 but also impair Treg 
function18 and induce intratumoral production of macrophage 
chemotactic protein, which was associated with increased 
effectiveness of a dendritic cell vaccine against 3LL tumors in 
mice.19

IL-12 is an immunostimulatory cytokine able to induce 
cytokine production, cytolytic capacity and proliferation 
of T  cells. In the presence of an immunosuppressive tumor 
microenvironment, the action of IL-12 can be suboptimal. 
However, when IL-12 is combined with cyclophosphamide, 
a reduction in tumor-associated MDSC and Treg can lead 
to enhanced antitumor activity.20,21 Importantly, the dose of 
cyclophosphamide in these studies is relatively low, since high 
doses are immunosuppressive. Similarly, costimulation of 
T cells through OX40 alone can lead to suboptimal antitumor 
responses, but when combined with cyclophosphamide a 
profound reduction in intratumoral Tregs can lead to eradication 
of established tumors in mice.22

Targeted therapies using small molecules that inhibit 
signaling pathways represent alternative drug treatments for 
some malignancies with less toxic profiles, and these are also able 
to lead to changes in the tumor microenvironment. For example, 
the BRAF inhibitor, vemurafenib can reduce IL-1 secretion by 
melanoma cells, which can lead to reduced expression of the 
immune inhibitory molecules PD-L1 and PD-L2 by tumor-
associated fibroblasts.23 Enhanced infiltration of tumors by 
T cells and increased recognition of melanoma by T cells has also 
been reported following treatment with BRAF inhibitors.24,25 
Other targeted therapies, such as the epidermal growth factor 
receptor tyrosine kinase inhibitor lapatinib, can also enhance 
T cell activation and their infiltration into tumors.26 Therefore, 
targeted therapies represent attractive options for combining 

with immunotherapies. Indeed, adoptive immunotherapy was 
demonstrated to be enhanced when combined with BRAF 
inhibition in mouse models of melanoma.27 However, some 
molecular pathways targeted by small molecule inhibitors 
can be important in the survival and function of immune 
system cells, and some targeted therapies can be detrimental to 
immune responses.28,29 A greater understanding of the impact 
of these drugs on immune system components and the tumor 
microenvironment will enable the design of more effective 
combination treatments for cancer.

Thus, the tumor microenvironment can be rendered more 
immunogenic by choosing particular types of chemotherapeutic 
agent (Fig. 1).

Radiotherapy to Enhance Immunotherapy

Several immunopotentiating events likely operate 
simultaneously within tumors following irradiation and, 
although studies rarely look at all these events and their role in the 
success of immunotherapy, some important connections between 
microenvironment changes and success of immunotherapy have 
been made. For example, enhanced Fas expression following 
localized radiotherapy was found to be important for the increased 
effectiveness of adoptively transferred T cells specific for CEA.30 
In this case, irradiation of subcutaneous mouse adenocarcinoma 
led to increased Fas expression and enhanced Fas-dependent 
CTL killing of tumor, together with a marked and significant 
decrease in tumor growth rate.

Similarly, two other studies demonstrated upregulation of Fas 
expression on tumor following localized irradiation of s.c. tumors 
and an enhancement of effectiveness of cancer vaccines.31,32 Both 
studies showed a dramatic influx of CD8+ cytotoxic T cells into 
the tumor, with associated tumor regression. Other changes 
were also noted including an increase in vascular density and 
an abscopal effect involving regression of distant unirradiated 
tumors.32 Interestingly, induction of high levels of T cell responses 
against two other antigens (gp70 and p53) overexpressed in 
tumor was also observed (antigen cascade effect).31 In the above 
studies, localized external beam irradiation was used, but the 
immunopotentiating effects have been shown to extend to other 
forms of radiation including brachytherapy using either 125I-seed 
or Yttrium-radiolabeled antibody when used in combination 
with vaccines.33

Other immunologically important molecules upregulated by 
radiation include MHCI. Local tumor irradiation, demonstrated 
to upregulate MHCI molecules on the tumor cell surface, was 
combined with adoptive transfer of tumor-specific CTL to 
enhance the antitumor effect of transferred cells.21,34 In addition, 
novel proteins could be generated by the tumor, which were 
presented on the MHCI molecules and recognized by the CTL. 
Well-established tumors expressing low levels of antigen were 
treated with local irradiation, causing transient upregulation 
of MHC complexes on stromal cells and presentation of tumor 
antigen. Maximal antigen expression occurred 2 d later, and this 
was then combined with adoptive transfer of pre-activated CTL, 
causing tumor regression.
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Other forms of immunotherapy besides vaccines and adoptive 
cell transfer can also benefit from radiotherapy. Blocking the 
CTLA-4 receptor to overcome T  cell tolerance was used in 
conjunction with fractionated local irradiation (in which the 
total radiation dose is delivered in smaller fractions over time) to 
inhibit subcutaneous breast cancer tumors.35 Only fractionated 
(and not single dose) radiotherapy worked synergistically with 
the anti-CTLA-4 antibody. In addition, an abscopal effect on 
distant tumors was observed together with a marked increase in 
tumor-infiltrating lymphocytes.

Different combinations of relevant monoclonal antibodies 
(mAbs) to stimulate immunity (anti(α)-CD137, α-CD40) and 
relieve immunosuppression (α-PD-1) have been combined with 
local irradiation in established orthotopic mammary tumors 
in mice.36 Complete regressions were achieved using α-CD137 
combined with α-PD-1 mAb and irradiation. Interestingly, in this 
case, single dose irradiation performed better than fractionated 
radiation. In these studies, treatment was associated with a 
temporary intratumoral enrichment of PD-1HighCD137+CD8+ 
T  cells. Significant tumor regressions also occurred with the 
combination of α-CD137, α-CD40 and radiation.

It is worth noting as a final comment on the use of radiation 
to alter the tumor microenvironment, that radiotherapy may 
not always mediate positive immunopotentiating changes to 
the microenvironment. Indeed, in a study on glioblastoma 
multiforme, radiation induced recruitment of vasculogenic 
bone marrow-derived cells through stromal cell-derived 
factor-1 (SDF-1), which restored vasculature allowing tumor 
recurrence.37

Modifying Tumor Endothelium

Irradiation and a variety of other approaches can be used 
to modify endothelial cells. Tumor endothelium that lines the 
blood vessels of tumors is composed of heterogenous cells that are 
organized abnormally when compared with normal blood vessel 
endothelium.38 Tumor endothelial cells have a higher proliferative 
rate, the blood vessels are dilated and chaotic, with discontinuous 
or absent basement membrane, and abnormal pericytes cover 
the tumor endothelium. Researchers have targeted the tumor 
endothelium to correct or disrupt this abnormal endothelium 
development.

Figure 1. The effects of chemotherapy and radiotherapy on the tumor microenvironment. A range of chemotherapeutic agents can affect the tumor 
microenvironment in a variety of ways. Oxaliplatin can induce immunogenic cell death in a proportion of tumor cells, which can lead to the release 
of tumor antigens for uptake and processing by antigen presenting cells (APC). Anthracyclines can recruit APCs and enhance their differentiation to 
an activated phenotype, better able to present antigen to lymphocytes. Oxaliplatin can also lead to an increased proportion of proinflammatory, 
M1, macrophages relative to alternatively activated, M2, macrophages. Gemcitabine, oxaliplatin and paclitaxel can reduce the frequency of myeloid-
derived suppressor cells (MDSC) and/or regulatory T cells (Treg) infiltrating tumors, thereby reducing their immunosuppressive effects. Tumor cells can 
upregulate expression of immune target molecules such as Fas and MHCI following irradiation, thereby rendering them sensitive to attack by T cells. 
Irradiation can also normalize dilated and chaotic blood vessels to enable T cells to access tumors. Increases in intratumoral T cells can also be achieved 
using antibodies against vascular endothelial growth factor (VEGF).
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Ganss et al. used irradiation to cause an inflammatory 
response in the tumor microenvironment, involving the release 
of cytokines and chemokines, and upregulation of adhesion 
molecules.39 This caused a remodeling of the tumor vasculature, 
due to upregulation of CXCL9 and CXCL10, enhancing vessel 
density in the tumors and changing their diameter so that they 
resembled normal capillaries. The irradiation was then followed 
by adoptive transfer of activated, tumor-specific lymphocytes, 
which previously had been unable to adhere to endothelium 
and access the tumor. Following irradiation, T  cells were able 
to access and penetrate the tumor and induce complete tumor 
regression in some cases.

Shrimali et al. utilized another therapy, an anti-VEGF 
antibody that inhibits VEGF/VEGFR-2 interaction, to normalize 
the tumor vasculature endothelium prior to combination 
therapy.40 Multiple doses of anti-VEGF were essential to 
increase extravasation into the tumor of adoptively transferred 

antitumor T cells following lymphodepleting conditioning. The 
combination therapy was required to cause reduction in tumor 
growth and prolonged survival of mice.

Another way to impact on tumor endothelium is to increase 
adhesion molecule expression on tumor endothelial vasculature. 
Palazon et al.41 targeted CD137, which is selectively expressed 
on the surface of endothelial cells in response to hypoxia, with 
an agonist anti-CD137 monoclonal antibody. This treatment 
increased cell surface expression of adhesion molecules (ICAM-1, 
VCAM-1 and E-selectin) on tumor endothelial cells, facilitating 
the adhesion and extravasation of adoptively transferred 
lymphocytes into the tumor.

Blocking new vessel formation is another way to impact 
on the tumor microenvironment by increasing hypoxia and 
inducing apoptosis and necrosis. Manning et al.42 utilized an 
anti-VEGF-R2 antibody, which decreased angiogenesis and 
increased tumor cell apoptosis. Combining this therapy with an 

Table 1. Examples of immunotherapies that can be combined with modification of the tumor microenvironment for effective anti-tumor responses

Strategy
Microenvironment 

modifier
Additional 

immunotherapy
Effect within tumor 
microenvironment

Effect on tumor size 
and mouse survival

Ref.

1. Chemotherapy

Cyclophosphamide
OX-40 agonist 

antibody

Treg depletion in tumor 
and enhanced effector 

T cell level, thus decreasing 
Treg/Teffector ratio.

Eradication of established 
tumors in 75% of mice 

bearing s.c B16-F10 tumors.
22

Oxaliplatin
Inducible 

adenoviral 1L-12

Reduction in MDSC in tumor 
and increased CD8+/Treg 

and CD8+/MDSC cell ratios.

Rejection of tumors in 
> 80% of mice bearing 

intrahepatic MC38 tumors.
14

2. Radiotherapy

Local irradiation
Adoptive cell 

transfer (ACT) of 
tumor-specific CTL

MHCI expression enhanced 
within tumor and increased Ag 
presentation and recognition 

by effector T cells.

Eradication of established s.c. 
MC38 tumors in 62% of mice.

51

Fractionated local 
irradiation

Blocking CTLA-4 
with antibody

Increased CD4+ and CD8+ TIL.

60% survival of mice 
bearing TSA breast cancer, 

and abscopal effect 
on distant tumors

35

Local irradiation
Anti-CD137 

with anti-CD40 
or anti-PD-1

Only effector 
PD-1hiCD137+CD8+ T cells 

were tumor specific and these 
were enriched in tumor.

Rejection of > 80% s.c. 4T1.2 
tumors with irradiation 

+ anti-CD137 with 
anti-CD40. Rejection of all 
orthotopic AT-3 mammary 
tumors with irradiation + 
anti-CD137 + anti-PD-1.

36

3. Modifying tumor 
endothelium or stroma

Anti-VEGF
Lymphodepletion 
+ ACT of tumor-

specific CTL

Increased extravasation 
of adoptively transferred 

T cells into tumor.

Reduction in tumor growth 
and prolonged survival of 

mice bearing s.c. B16 tumors 
with 20% long-term survival.

40

FAP+ cell ablation by 
diphtheria toxin (DTX)

Vaccinia-OVA 
immunization

60% reduction in tumor 
and stroma cells in 48 h.

s.c. Lewis lung carcinoma-
OVA (LL2/OVA) eradicated.

44
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anti-Her2 vaccine enhanced tumor regression by tumor-specific 
CD8+ T cells. Li et al.43 also targeted VEGF receptors, but in a 
different way, using a recombinant adeno-associated virus vector 
expressing a soluble VEGF receptor. When used in combination 
with GM-CSF-secreting tumor cell immunotherapy a decrease 
in intra-tumoral Tregs, and an increase in activated CD4+ and 
CD8+ infiltrating effector T  cells was observed, significantly 
enhancing the survival of the mice.

As well as endothelial cells in the tumor microenvironment, 
there are mesenchymal stroma cells, identified by the expression 
of type II membrane dipeptidylpeptidase fibroblast activation 
protein-α (FAP). Their suppressive function on efficacy 
of vaccination was ascertained in mice following FAP+ cell 
ablation.44 Ablation of FAP+ stromal cells (which made up ~1% of 
all tumoral cells) combined with vaccination (VaxOVA) caused 
immediate tumor growth arrest with 60% decrease in viable cells 
in the tumor, which was dependent on TNFα and IFNγ.

Concluding Remarks

The above review summarizes many different approaches that 
have been used to change the tumor microenvironment to enhance 
co-administered immunotherapies (Table 1). Insight gained 
from mouse studies into the efficacy of combining chemotherapy 
and/or radiotherapy with immunotherapy has been used in the 
design of clinical trials. Combining paclitaxel and carboplatin 
with anti-CD137 for the treatment of melanoma and renal 
cell carcinoma was well tolerated and produced some partial 
responses and increases in circulating CD8+ T cells.45 Combining 

gemcitabine with agonist CD40 antibody induced partial tumor 
regression in 4 of 21 pancreatic ductal adenocarcinoma patients 
receiving the combined treatment.46 Histological analysis of 
tumors from two patients showed regression without lymphocyte 
infiltrate, and a potential mechanism for regression was shown 
in a mouse model to be due to reeducation of tumor-associated 
macrophages. This study demonstrated that combination therapy 
in which the tumor microenvironment is modified by one or 
both therapies can facilitate tumor regression.

Radiotherapy is also being used to synergize with 
immunotherapeutics in patients. For many years antibodies 
have been used to target radioisotopes to tumors, and localized 
modification to tumor microenvironments may well have 
contributed to some successes of this form of treatment.47 More 
recently, localized radiotherapy has been used in combination 
with immune modulators, and increases in tumor-specific T cell 
frequencies demonstrated, together with some partial tumor 
responses.48–50

Immunotherapy is a highly promising treatment option for 
cancer, and as our understanding of the tumor microenvironment 
increases, we can anticipate the development of enhanced 
therapies utilizing immune strategies. In particular, with our 
developing knowledge of how chemotherapeutic agents and 
radiation can be used to modify the immunosuppressive nature 
of tumors, the full potential of immunotherapy may be able to be 
liberated against malignant disease.
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